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Three different solvation models are applied to a simple molecular system: 
the water dimer. The first order perturbation scheme of Hoijtink and Jano, 
Miertus and Kysel implementation of Klopmans' solvaton model and the 
virtual charge model of Constanciel and Tapia are used to study some aspects 
of proton potential curves. The calculations indicate that the solvent reorganiz- 
ation energy is important for the realistic reproduction of solvation. The 
solvent effect in correlation energy is also investigated using a second order 
perturbative approach. Finally some difficulties found when using the solvaton 
method are discussed by means of the Har t ree-Fock instabilities theory of 
Paldus and Cizek and Stanton. 
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1. Introduction 

During the last decade it has been an increasing interest in the development of 
models for the interaction of molecules with their neighbors. Among these, the 
most proficient work was done on solvation models [1-72] either by the explicit 
consideration of the solvent molecules [1-13] or by considering a polarizable 
environment in which the solute is immersed [10-30]. This latter point of view 
usually takes the relative permittivity of the solvent as an external macroscopic 
parameter,  exploiting the known dependence of the equilibrium and velocity 
constants on the dielectric constant [61-64]. A theory which does not use the 
dielectric constant as a parameter is the Self-Consistent Reaction Field (SCRF) 
model [22, 6-29]. Here,  a parameter g, related to the reaction field strength 
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operating at the solute molecule, is used instead. This method has been used 
semi-empirically within the CNDO/2 parametrization and the MINDO/3 one 
in a scheme known as MINDO/3-SCRF [65]. An extension of the SCRF method 
to simulate protein core effects [66] has been used to describe enzyme reactions 
[3] and, in particular, the proton relay system of liver alcohol dehydrogenase 
[67]. An example of a mixed method, where some aspects of both the super- 
molecule and continuous methods appear, is that of Warshel [68, 69]. The main 
features of this "surface constrained soft sphere dipoles" (SCSSD) model are 
twofold. In the first place, it avoids the problems of the dielectric continuum 
approaches by explicitly considering the solvent molecules. In the second place, 
it overcomes the difficulties of the supermolecule approach by representing the 
solvent molecules as soft sphere point dipoles (SSPD). In this model the solute 
molecules are surrounded by a cluster of "solvent molecules" represented as 
SSPD. This cluster is also surrounded by a surface of SSPD constrained to fixed 
centers which correspond to the structure of the bulk solvent and all this system 
is embedded in a continuum characterized by the dielectric constant of the solvent. 
A simpler model where the solvent molecules are also represented by point 
dipoles is the one of Berndt and Kwiatkowski [70]. Here the potential due to 
the solvent is described by the multipole expansion, where the charge interaction 
term has been substituted by a classical parametric expression of the electrostatic 
interaction contribution. Instead of point dipoles, it is also possible to use point 
polarizabilities. This is done, for example, in the method of Thole and van Duijnen 
[71]. The advantages of this model are that it does not lead to a non-linear 
effective Hamiltonian, as point dipole techniques do, and that it accounts more 
accurately for the solute's electrical field. Also in this spirit is the polarization 
model of Stillinger and David [72] which has been recently applied to the proton 
transfer in the water dimer [94] and to the behavior of LiF solutions in water 
[73]. Other approximation to the problem is that of Clementi and coworkers 
[42-60], who used theoretical pair interaction potentials combined with a statis- 
tical approach to the possible disposition of the water molecules, to calculate the 
energy of hydration. 

In this work we want to compare the results given by three different solvation 
methods when they are applied to a simple problem: the proton potential curves 
(PPC) in the water dimer system. This is a quite important problem in biology 
and chemistry which has been already examined by Tapia et al. [22, 26] using 
the SCRF method. 

2. Models  

We have used the semi-empirical CNDO/2 method [74] to obtain the wave- 
functions for the water dimer in its experimental geometry [75] and for different 
values of the OH distance (x in Fig. 1). No geometry optimization was done for 
any of the calculations due to the known failure of the CNDO/2 method to 
reproduce the experimental conformation of this system [76, 77]. However, we 
have calculated the PPC for different values of the OO-distance (y in Fig. 1) 
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Fig. 1. Water dimer in its experimental 
geometry 
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around the experimental equilibrium one and also at the equilibrium distance 
obtained by the C N D O / 2  method. 

The calculations have been done for the system in vacuum and for the solvated 
one. Three models were used to take into account the solvent effect. First, the 
Jano-Hoij t ink [78,791 first order perturbative correction to the total energy was 
used, without modifying the molecular orbitals of the system because of the 
presence of the solvent (i.e. no solvent-dependent terms were added to the 
Har t ree-Fock operator).  Secondly, the solvaton model of Klopman [80] both in 
the versions of Miertug and Kysel [16] and Constanciel and Tapia [23] was 
employed. 

In the first part of this paper the PPC for each method, obtained with a fixed 
value of the dielectric constant (e = 80) are compared with those obtained when 
no solvent is present (e = 1). Also the energy decomposition in Constanciel's 
method is done. In the second part, the influence of the solvent in the second 
order  perturbation energy is calculated and the results are compared with those 
of Tapia et al. [22] obtained with the SCRF model. 

Finally we have examined the effect of solvation in the stability of the Har t ree -  
Fock solution to the problem. The Har t ree-Fock instabilities were considered 
using the formulation of Thouless [81] and Paldus and Cizek [82, 83] and the 
results were also analyzed from the point of view of Stanton [84, 85]. Some of 
the results obtained have points of contact with the work of Contreras and 
coworkers [86, 87]. 

3. Theoretical  framework 

According to the Jano-Hoij t ink use of Born's formule [78, 79, 88] we can write 

ET(e)  = ET(1) -- 0.5(1 -- e -1) E • (ZA -- PAA)(ZB -- PBB) TAB (1) 
A B  

where E T (8) is the total energy of the molecule immersed in a solvent of dielectric 
constant e, ET(1) is the total energy of the system in vacuum, ZA is the atomic 
core charge of atom A,  PAA is the electronic charge of atom A, and ")'AB is the 
two-center electronic repulsion integral. Our first model consists of the use of 
formule (1) taking PAA and PBB as the electronic charges of atoms A and B 
when the system is in vacuum, i.e. they are solvent independent. This method 
gives the electrostatic coulombic energy of solvation. 

In the method of Miertug et al. E14-18, 77] the solvent effect is incorporated by 
representing the solvent as induced point charges, called solvatons, in the sur- 
roundings of the solute molecule. The solvaton model was originally developed 
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by Klopman [80] and recently applied within the context of the MIN D O /3  
method by Klopman and Andreozzi [89]. In the formulation of Miertug and 
Kyse[ [16] the hamiltonian for a molecule with N valence electrons, M atomic 
cores with charges Z~, is obtained from the unperturbed Hamiltonian ~ by 

C --1 ~ ( e ) = 2 g 0 -  ~ 0 /7 ,1  - Y~ ZmOsrms (2) 
/x=l s=l  rn=l s=l 

where the first and second terms of the perturbation in formule (2) represent 
the interaction between electrons and solvatons and between nuclei and solvatons 
respectively. The solvaton charges, O,, are assumed to be proportional to the 
charges in the solute atoms, ZA--PAa, using a proportionality constant which 
depends on the dielectric constant e 

Q, = -0 .5(1  - e -1 ) (ZA  -- PAA). (3) 

Taking into account that in the solvaton model the electrostatic coulombic energy 
can be expressed by the Jano-Hoij t ink equation we can write the solvation energy 
in the form 

E T ( e )  = E el . . . .  1(E) + EP~ (4) 

where E el . . . .  l(e) is calculated by the second term in the right-hand side of Eq. 
(1) using the electronic charges calculated with the modified Hamiltonian of 
Eq. (2). EP~ is calculated as the difference between the total energy of the 
solvated molecule and the electrostatic-coulombic energy E el . . . .  l(e). Since this 
model does not include the polarization energy of the medium, the energy EP~ 
could be adscribed to the polarization of the solute molecule in the presence of 
the solvent [18]. 

In Constanciel's model the solvation energy can be expressed as [30, 90] 

Es(P)  = E el (P)  + ECs . . . . . .  d ( p )  + E smed-med ( lp)  (5 )  

where 

E~ ] (P) = Wr P(F~ (P)  - 0.5 G ( P ) )  (6) 

E~ . . . . . .  d ( p )  = - ( 1  - - 1 / 2 )  E ~, ZA(ZB --PBB)YAB (7 )  
AB 

E med-med ( P )  = 0 . 5 ( 1  - 8 -1 /2 )  2 ~ •(Z A -PAA)(ZB --PBB)'YAB. 
AB 

(8) 

Here  we used the notation of Constanciel's paper [30]. The elements of the 
modified Har t ree-Fock matrix are 

[F~ (P)]m, = [FI(P)]m, + (1 - e -1/2) Y~ (ZB --PBB)TAB IX C A (9) 
B 

[F~(P)],v =[FI(P)]u~ for all IX # v. (10) 

F1 (P) is the Har t ree-Fock matrix of the unperturbed molecular system in vacuum. 
This model allows for a more flexible representation of the solvent because it 
includes the medium electrostatic self interaction energy, Eq. (8), which takes 
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into account the reorganization of the solvent due to the action of the solute. 
Besides this, the major difference between the VCM and Miertug model is the 
behavior of the e-dependent coupling constant in the Hartree-Fock matrix [90]. 
While in the VCM this constant, a(e)  = 1 - e  -1/2, has limits zero when e-+ 1 and 
one when e ~ oe, the same as in the SCRF method [3, 26-29], in the procedure 
of Miertug we have the values zero and ~ for the same limits. A thorough analysis 
of these models is given in the paper of 0. Tapia, where it is shown that Miertug 
and Kysel (MK) model does not emerge when the variational principle is applied 
to Klopman's total energy functional [80, 91] (see Eqs. (46) and (43) in Ref. [92]). 
It may be seen that this problem is caused by a 1 factor in MK Hamiltonian. 
Consequently, the agreement with the variational principle can be achieved if 
one assumes that the dielectric constant in the MK model, eMK, is really a function 
of the dielectric constant in Klopman's model, eK, and they are related by the 
equation 

eK (11) 
E M K  ~--- 2 - E K " 

This clearly shows that the MK factor, eMK, cannot be taken as the relative 
permittivity of the medium if Klopman's model is used as the starting point. This 
will be further discussed later. 

Finally, the stability of the CNDO/2 wavefunctions was investigated by 
diagonalizing the E" matrix related to the second order variation of the energy 
by the equation [81-83] 

1 D  [ I B ,  B 

B* A* 

where D is the column matrix of the uji, the coefficients of the variation 

6i--" 61 = 6 i + ~  6]uj~ (13) 
J 

of the orbitals, and A and B are matrices defined as 

n .. = ( 6,1 > - < I r  + ( li, jk )  - ( lk, ji) (14) 

B,~.kj = (li, k j ) - ( l j ,  ki) (14') 

where ,~ is the Fock operator, i, j denote occupied orbitals, k, I are virtual orbitals 
and the integrals are, as usual, 

(li, j k )  = I 6 "  (1)6,(1)6" (2) 6k(2)rl~ dT~ d'r2. (15) 

We also investigated the instabilities according to Stanton by the absolute value 
of the largest eigenvalue of matrix Q defined as [84, 85] 

Oq,,, = - ( e l -  ej) !/2(e r - e,)-1/214(ij, rs) - (ir, js) - (is, jr)]. (16) 
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In all the cases investigated we have calculated the four possible types of 
instabilities: singlet, triplet, non-real and Stanton. 

4. The proton potential curves 

In Fig. 2 we have represented E r  vs. OH distance for the following four cases: 
(a) without solvation, (b) with the Jano correction to the total energy, (c) with 
Miertug model, and (d) with Constanciel's model, for an OO distance of 3.0~ 
in each case. 

In Table 1 we give the total energies for the two minima found, the energy 
difference between them, and the barriers for each one of them. 

From Fig. 2 and Table 1 we can see that the progressive consideration of more 
terms in the total energy expression has the following effects 

1. creates a secondary minimum at a geometry consistent with the ionic pair 
H30+HO -, 
2. progressively diminished the energy gap between the two minima, and 
3. progressively diminished the energy barrier that precludes the inter-conversion 
of the ionic and hydrogen-bonded forms of the system. 

05  2.5 
I 
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doH (~,) 
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- 3 9 . 5 0 -  

z.o.o0 - 

(3 
v 

Fig. 2. Curves of total energy against OH distance. From top to bottom: for the unsolvated molecule; 
using the Jano correction; using Miertug' model and using Constanciel's model 
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Table 1. Total energies for the minima, energy differences and barriers for the interconversion 
between them. All energies are in a.u. See text for the meaning of the last two lines 

E T ( H 3 0 + H O  -)  ET(H2OH2 O) AE a B I  b B2 ~ 

Unsolvated -39 .764906  
Jano -39 .602329  -39 ,794586  - 0 , 1 9 2  0.006 0.198 
Miertug I -39 ,790270  -39 .823864  - 0 , 0 3 4  0.086 0.120 
Constanciel - 39 .838072  -39 .859101  -0 ,021  0.052 0.073 
Miertug II -39 .696303  -39 .810296  - 0 . 1 1 4  0.035 0.149 
Constanciel (S.O.P.) -39 .881615  -39 .923514  - 0 . 0 4 2  0.043 0.085 

2xE is the energy difference between the second and first minima. 
b B1 is the  barrier measured  from the first minimum. 
~ B2 is the barrier measured from the second minimum. 

In Fig. 3 we have drawn the components  of the total energy in the VCM for 
e = 80.0. It can be seen that while the core-medium interaction energy is respon- 
sible for the barrier between the two forms of the system, it is the medium self 
interaction energy which is responsible for the greater stability of the hydrogen- 
bonded form. 

It is certainly true that the OO-distance in the dimer will influence the shape of 
the PPC. To explore this aspect of the problem we have calculated them for 
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Fig. 3. Energy decomposition of total energy in Constanciel 's  model (a) E~I+ E rep+ 43.5 (a.u.) (b) 
core  m e d  E reed-meal  E -2.0 (a.u.) (c) (a.u.) 
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Fig. 4. PPC for different OO-distances. Primed letters represent the curves including solvation, 
unprimed ones the unsolvated cases. Unsolvated curves have been shifted 0.30 a.u. upwards for 
clarity in the drawing. (a) 2.55 &, (b) 2.92 ~,, (c) 2.96 ~ and (d) 3.02 

some different OO-dis tances  a round  the experimental  one. The results obtained 
are plot ted in Fig. 4 for  e = 1.0 and e = 80.0. 

We  have also obtained the best OO-dis tance ,  according to the C N D O / 2  method,  
using the experimental  geomet ry  of the monomers .  The  result, doo  = 2.55 ~ is, 
as expected,  much shorter  than the experimental  one. The PPC calculated for 
this OO-dis tance  is also depicted in Fig. 4. The analysis of these curves does not  
give any unexpected result. The  increment  in the monomers  separat ion merely  
allows the decrease in the overlapping of the two attractive potentials for the 
proton.  This motivates the appearance  of double-minima-shaped  curves but does 
not  influence markedly  nei ther  the profoundness  of the well, nor  the position of 
the two minima (i.e. the distance of the p ro ton  to the oxygen to which it is 
bonded,  see Table 2.) 
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Table 2. Total energies (in a.u.) and OH distances (in K) for the minima obtained with different 
values of the OO distance. The values in parenthesis are the distances of the hydrogen to the oxygen 
to which it is bonded. The first row corresponds to the equilibrium OO distance determined by the 
CNDO/2 method. The other values were taken around the experimental equilibrium distance 

First minimum Second minimum 
With solvation With solvation Without solvation 

doo ET don ET doH ET doH 

2.55 -39.774820 1.50 -39.878416 1,40 
(1.05) (1.15) 

2.92 -39.840795 1.05 -39.768106 1.90 -39.863818 1.85 

(1.02) (1.07) 

2.96 -39.840795 1.05 -39.766803 1.; -39.862973 1.90 

(1.Co) (1.06) 

3.02 -39.839050 1.05 -39.766544 2.00 -39.861091 1.95 
(1.03) (1.07) 

In the VCM one is led to a factor depending on the �89 of the dielectric 
constant by the assumption that Born's equation for the solvation energy must 
be recovered [23]. The other possibility is preferring to reproduce the reaction 
field according to the electrostatic of a dielectric. In this case we have 

E,=- I /2 (1 -e -1 )E , .~  (17) 

using the notation of reference [23]. Miertus has proposed [93] to use the basic 
features of VCM and the weighting factor � 89  1) in Fock operator  and in 
E~,s, instead of ( 1 -  e -1/2) and to evaluate E,  according to 

Es = -1 /211 /2 (1  - e-')]E,,, (18) 

where Ex, is the solute-solvent coulombic interaction energy at the end of the 
SCF procedure. This is exactly the same as Constanciel does, except that the 
"dielectric constant" in VCM, eo  is related with the one in MK model by the 
formula 

4e 2 
ec ( l + e M )  2" (19) 

The analysis of Eq. (19) shows clearly that in this last model proposed by Miertug 
only modest polarizations can be achieved (i.e. ec less than 4.0) as compared 
with the original Constanciel's model (in particular, the relation with the o)- 
technique [30, 90] could never be reached). For instance, in Fig. 5 we have drawn 
the PPC for the VCM and this method of Miertug, both of them corresponding 
to e = 80.0. The relevant data for the latter one are grouped in the fifth row of 
Table 1. 

It can be observed the complete parallelism between both PPC. From the 
data in Table 1 we can deduce that this model suggests an easy conversion from 
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Fig.  5.  P P C  for  C o n s t a n c e i l ' s  m e t h o d  and  for  the  s e c o n d  m e t h o d  o f  Mier tus .  (a) V C M ,  (b) M i e r t u s '  

s e c o n d  m e t h o d .  In b o t h  c a s e s  the  c u r v e s  h a v e  b e e n  d r a w n  wi th  e = 80 .0  

the ionic pair to the hydrogen-bonded system which may be, in the conditions 
of this study, a more faithful representation of the true situation. As a whole, it 
can be said that there is no reason to definitely prefer one of the models over 
the other. Something which is certainly sure however, is that the dielectric constant 
must not be taken too seriously but as a semi-empirical parameter which, in some 
way, is connected to the dielectric properties of the solvent. Its value, however, 
can vary greatly as the connection between the different "dielectric constants" 
in Klopman's, Miertug' and Constanciel's models prove. 

5. The Second Order Perturbation Energy 

The methods discussed so far do not take into account the dispersion energy 
since they are of electrostatic nature only. The dispersion energy could be 
considered by a second order perturbation [27] and this is what we have done. 
In Fig. 6 we have plotted the S.O.P. energy against OH distance using the 
wavefunction calculated with Constanciel's solvation model (E=80 .0 ) .  The 
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Fig. 6. Second order perturbation energy, in a.u., vs. OH-distance, in ~,, for v = 80.0 

behavior of this perturbation term is the expected one. It is greater for the 
hydrogen-bonded form of the complex than for the ionic pair, where the electros- 
tatic interactions are thought to be dominant. However small (only 1% of the 
total energy) the difference between the values for the two minima gives a net 
stabilization of the hydrogen-bonded form by 0.0209 a.u. This is similar to the 
energy difference between them calculated without the perturbation energy, 
which is 0.0210 a.u. Summing up these contributions we obtain an energy 
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Fig. 7. Second order perturbation energy, in a.u., against dielectric constant for the ionic pair (top), 
and the hydrogen-bonded (bottom) forms of the system 
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difference of 0.0409 a.u. These values have been included as the sixth line of 
Table 1, In Fig. 7 we have drawn the curves of the S.O.P. energy vs. the dielectric 
constant for the two forms of the system. It can be seen that the behavior is 
similar in both situations, This implies that the S.O.P. energy will not substantially 
modify the curves of total energy whichever the dielectric constant may be. This 
is supported by Fig. 8 where the total energy and the total energy plus S.O.P. 
energy have been plotted against the dielectric constant. We can see that the two 
curves are very similar, Since the hydrogen-bonded form of the system is likely 
to be the more affected one, we can conclude that the results obtained for e = 80.0 
will be valid for other values of the dielectric constant. 

D 
(3 

I.# 

- 39  60  - 

- 3 9 . 7 0  

! 
- 3 9 8 0  

- 3 9 . 9 0  - 

~ r  I - - "  1 
1.0 1 5 2 0  

d o l l  ( ~ , )  

Fig. 8. Curve of total energy (a), and total energy plus S.O.P, energy (b) vs. dielectric constant. 
Energies are in a.u., e = 80.0 

6. Discussion and conclusions 

From the calculations presented here it can be seen that of the three models, it 
is Constanciel 's one the most capable of reproducing the solvent field, at least 
in a qualitative way. However ,  all the models predict a secondary minimum 
energy conformation which corresponds to the ionic pair. 
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The behavior of the S.O.P. energy in Constanciel's model is completly analogous 
to that obtained by Tapia et al. [22] in the framework of the SCRF model. This 
suggests that it may be a relation between the dielectric constant and the g factor, 
a fact which is also supported by the plot of the S.O.P. energy against the dielectric 
constant, the a factor and the g factor done in Figs. 9 and 10. This point has 
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F i g .  10.  Second  order perturbation energy,  in a.u.,  against g factor,  in bohr -3,  in Tapia's calculation 
for a similar sys tem than the one  studied in this p a p e r  [9]  
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already been discussed in detail by Lamborelle and Tapia [29], Tapia and Silvi 
[65], and Tapia [92] where a thorough substantiation of this relation can be found. 

It is clear that the main advantage of these models is the stabilization of ionic 
structures. This can be of great help in the study of reactions where the reactants 
are ionic or highly polarizable. However some care must be exercised when 
studying these systems. An example of the problems which may be encountered 
is provided by the H30+HO - system. If the PPC for e = 80.0 is calculated normally 
(i.e. without convergence-forcing methods) it is observed that the state of the 
system changes abruptly when the OH distance is greater than 1.1 ]~. Comparing 

0.50. 

O" 

- 0 . 5 0 -  

5 
0 

-1 .00 -  

-1 .50.  

9 a '  

8 a '  

3 0 "  = = = = = = = = = = = = = = = = = = = = = = = =  . . . . . . . . .  
'7(:1' 

6 0 '  II . . . . . . . . . . . .  ~ - .  

2Q" n . . . . .  "--- 'P,--  - - ,  

5 ( ] '  ~ . . . .  - . . . . . . .  - - e - . ,  ""--~--'- - .  

. -  . . . . . . . .  - _ 2 : : :  . . . .  " 

/ 4Q '  _44_. . . . . . .  . . . . . .  1] " "  [I " "  ~ - - "  
3 0 '  ~ . . . . .  : . . . . . . . .  - - 4 4 - - ,  ,.-H.P-"'"- 
1 a"  ;,, 

2 a '  - 4 + -  . . . . .  

l a '  .._l.i.~ ~ ~ 

I I 

1 . 0  1 . 5  

d o H ( ~ )  

Fig. 11. Energies, in a.u., for the molecular orbitals of the ionic pair at OH distances between 0.7 
and 1.5 A,  e = 1 . 0  
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the ordering of the molecular orbitals in the zone of the PPC corresponding to 
the ionic pair we can observe the great difference between the unsolvated and 
solvated systems (see Figs. 11 and 12). Most important is that the crossing of the 
orbitals for OH distances between 1.0 A and 1.1 A involves the HOMO and 
LUMO of the system changing completely, at least in principle, its properties. 
An analysis of the charge distribution at OH distances of 1.0 A and 1.1 A shows 
that the wavefunction at the lower distance corresponds formally to the structure 
H 3 0 - H O  + a direct consequence of the fact that the molecular orbital which 
represents one lone pair of the oxygen in HO- is unoccupied in this case leading 
to a transfer of two electrons from one fragment to the other and to this unphysical 
situation. To correct this error we used a simple linear mixing algorithm for the 
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Fig. 12. Energies, in a.u., for the molecular orbitals of the ionic pair at OH distances between 0.7 
and 1.5 A,  e = 80.0 
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Fig. 13. Isoenergetic contours for the contribution of the HOMO of the system to its total density, 
e = 1.0, A = 0.5. The values of the contours are obtained dividing by 2.0 the value of the preceeding 
contour and beginning with A = 32.0 kcal/mol 

Fig. 14. Isoenergetic contours for the contribution of the HOMO of the system to its total density, 
e = 80.0, A = 0.0. The values of the contours are the same as in Fig. 13 
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Fig. 15. Isoenergetic contours for the contribution of the HOMO of the system to its total density, 
e = 80.0, h =0.5. The values of the contours are the same as in Fig. 13 

densi ty matr ix  in each i tera t ion of the SCF procedure  

p(i) = (1 - h )P(i) + AP (i-1). (20) 

Using a mixing paramete r  h = 0.5 it is possible to revert  the s i tuat ion so as to 

have the same state before and after the O H  distance of 1.1 A with the right 

occupancy for the a fo rement ioned  molecular  orbital.  The con t r ibu t ion  of the 

H O M O  to the total densi ty shows this drastic change. As can be seen in Figs. 13, 

14 and  15 it differs both  from the unsolvated  case and from the n o n - p r o m e d i a t e d  
one (h = 0.0). 

The  explanat ion  of this behavior  can be found  examining the lowest e igenvalue 
of the instabilities matrices E" (according to Paldus and Cizek [82, 83]) and O 

(according to Stanton  [84, 85]). In Table  3 we repor t  these values for the 

Table 3. Lowest eigenvalues of the matrices of instabilities (see text). The distances are in A. Note 
that the equality of the values for the singlet, triplet and non-real cases in the second, third, fourth 
and fifth columns is a coincidence since the other eigenvalues are different 

doH e h Singlet Triplet Non-real Stanton 

0.8 1.0 0,5 -0.09986 -0.29658 -0.09986 -1.41246 
80.0 1,0 -0.04983 -0.04983 -0.04983 -1.10702 
80.0 0,5 0.07400 0.07400 0.07400 -0.92321 

1.1 1.0 0.5 -0.07731 -0.03203 -0.07731 -1.15911 

80.0 1.0 0.07470 0.07470 0.07470 -0.92255 
80.0 0.5 0.07470 0.07470 0.07470 -0.92255 
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unsolvated and solvated systems at doll =0 .8  ~ and 1.1 ~ respectively. For the 
solvated system we show the eigenvalues when A = 0.0 and when A = 0.5. 

Some facts may be noted from this Table. First, the wavefunction for the 
unsolvated system is unstable and the effect of solvation is to reduce the absolute 
value of the least eigenvalue reported on this Table. However this reduction is 
not sufficient to make the SCF process converge to the stable wavefunction. To 
do this it is necessary to use the mixing of density matrices. The wavefunction 
obtained (to which we have referred above) is stable both from the point of view 
of Paldus and Cizek and from that of Stanton. The instability of the unsolvated 
wavefunction is obviously produced by the great separation of charge in the ionic 
pair. In the solvated wavefunction, on the other hand, the instability is produced 
by an anti-aufbau solution (see the work of Stanton) where the molecular orbital 
representing the oxygen lone pair should be occupied. In the second place, we 
can see that at doll = 1.1 ~ (the equilibrium OH distance for the ionic pair) the 
unsolvated wavefunction continues to be unstable but the solvated solutions are 
stable for either value of A. In fact there is no difference between the eigenvalues 
obtained for the two values of A in this case. 

Care must be exercised, then, because the solvent effect can influence the SCF 
process so as to give solutions that are really unstable but were obtained without 
convergence-forcing methods. In this respect we can think that the solvent 
perturbation of the Hamiltonian resembles the problems found in NMR calcula- 
tions by Contreras and coworkers [86, 87]. 

Some final remarks may be done concerning the energy decomposition analysis 
of Constanciel's model. First it may be argued that the solvent polarization energy 
for the hydrogen-bonded system, E med-med = 106 kcal/mol is too high. The calcu- 
lations done shows that this energy varies very slowly with the separation of the 
molecules so that the principal effect on it seems to be mainly independent of 
the bonds between the fragments and largely dependent on the individual solvent 
polarization energy of each of them. In the case of the water monomer our 
calculations give approximately 57.9 kcal/mol for j~rned med (HzO). This implies 
that the effect in the dimer is simply connected to the effect in the monomers. 
Since this energy is directly connected to the formal charge of the atoms it 
depends on the accuracy with which the C N D O / 2  method reproduces the polarity 
of the bonds. This is an aspect of the problem which needs further study. 

Another  problem is that the difference between the two minima coming from the 
b-terms is small (approx. 6 kcal/mol) and then the energy difference comes from 
the near cancellation of two opposite quantities (a- and c-terms). Although this 
may obscure the meaningfulness of the conclusions based on quantitative differen- 
ces between the minima it can not alter the essential fact of the existence of them 
and of the existence of the barrier since these facts are provided by b-terms. 
Other information to take into account is that the dispersion energy acts in the 
same direction as the deduced energy difference so that any problem with the 
compensation can be masked by the effect of it. This is another point which 
merits a thorough investigation. 
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